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Abstract

The following concerns itself with development of solutions to the functional
equation 2.45 on page 32 of E. T. Jaynes’ book “Probability Theory: The Logic of
Science” [2].  But the development given there, however valid, appeared opaque
and non-intuitive to this author.  It is hoped that the following will provide a proof
that is much easier to follow, and more suggestive of the essential concepts
required in reaching the result, than Jaynes’ work.

In a previous paper [1] it was shown that, in order to satisfy the self-reflective
constraint S(S(x)) = x, the “negation” function S(x) must be “even” about the line
s = x.  It was subsequently determined, however, that this condition is necessary
but not sufficient to satisfy Jaynes’ equation 2.45.  As a result the previous paper
was withdrawn.  It has been re-issued in view of the relevance of its essential
contents to the following.  I leave it to the reader to assess which parts of the
development and comments therein are still correct and relevant.

The development below shows that the “even” property, although not sufficient,
leads to a solution of the functional equation by a far more intuitive route than the
conventional solution offered in Jaynes.  One need only look to the implications
of the “even” property for equation 2.45, along with a symmetry requirement on
the s and x variables, to arrive at the general solution offered in Jaynes.

A Preliminary Result

Figure 1 shows a typical candidate for the function S(x), or T(u), a function which
is “even” about the line s = x.  A second set of coordinates, (u,t), is also shown.
The t axis is the line s = x in the (x,s) frame.



As a brief review of the development in reference [1]…

“Even”, in algebraic notation, means

T(u) = T(-u).  (1)

The corresponding condition in the (x,s) frame is a “cross” assignment of
coordinates.  For example, considering the points “a” and “c”,

Xa = Sc and Sa = Xc. (2)

The self-reflective points are found easily by “reflecting” an x (or s) coordinate in
the line s = x.  The reflection points are “d“ and “b” in the above example.

Continuing on with the new development…

The centres of the self-reflective squares abcda and efghe respectively are the
points “m” and “n”, located by drawing the intersections of the other diagonal of
the respective squares with the line u = 0 (or s = x).

Points “a” and “g” are chosen arbitrarily.  Their self-reflective points, “c” and “e”
are determined by the curve T(u).  The “x” interval between “c” and “g” is defined
as Q.  The “x” interval between “e” and “a” is defined as R.

By inspection, these definitions imply that the “s” interval between “c” and “g” is
also R, and that between “a” and “e” is also Q.  In either case, Q, and, by
implication, R, are both considered very small with respect to 1.
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In general the intervals Q and R are not equal, with R being the lesser for curves
concave to the origin.  Their precise difference can be determined as a function
of ( Tn – Tm ), but it turns out this is not important.

Derivation of Jaynes’ (Cox’s) Solutions

We are now in a position to derive the functional solutions to Jaynes’ equation
2.45, viz.

Xa S( Sg / Xa ) = Xg S( Sa / Xg) (3)

By inspection of Figure 1

Sg = Xe (4a)

     =  Xa – R (4b)

and

Sa = Xc (5a)

     = Xg – Q (5b)

Substituting in (3) gives

Xa S( (Xa – R) / Xa ) = Xg S( (Xg – Q) / Xg ) (6a)

Xa S( 1 – R / Xa )      = Xg S( 1 – Q / Xg ) (6b)

A general Taylor Series expansion about (x,s) = (1,0) yields

S( 1 – Z ) = S(1) + S’(1) Z + O(Z^2) (7)

But one of our constraints is

S(1) = 0 (8)

Using (7) and (8) in (6b), and neglecting the high order terms gives

Xa S’(1) ( -R / Xa ) = Xg S’(1) ( -Q / Xg ) (9)

We have a problem here in that S’(1) may actually be negative infinity in the (x,s)
frame.  However it is the SAME S’(1) on both sides of (9), and thus may be
cancelled anyway, leaving



R = Q (10)

as the requirement on S(x), in order to satisfy (3).

This condition can only be met if the centres, points “m” and “n”, of the self-
reflective boxes, are coincident.  The only geometry that creates the coincidence
makes S(x) the alternate diagonal,

S(x) = 1 – x (11a)
or

T(u) = 1 / sqrt(2) (11b)

Our development has thus led us to the “main” solution given in Jaynes, by a far
more transparent development.  But it seems to have left out the other solutions
given by 2.58.  Let us consider this further.

The solution, (11a), rewritten in a more symmetrical form, is

S(x) + x = 1 (12)

Following Jaynes’ arguments on page 33 concerning loss of generality, but in
reverse, there is nothing preventing us from changing the “linearity” of the
relation between S and x.  Let us define

S(x) = y^m (13a)

and

x = z^m (13b)

Substituting in (12) then gives

y^m + z^m = 1 (14)

This is actually the SAME solution as (12), since any substitution for an
independent variable in (3) would force us to adjust the dependent variable to
correct for m <> 1 in (14).  The basic conceptual relation, (11), is not generalized
by adding the exponent “m” to the basic requirement.

In other words: by the time one corrects for the exponent to permit use in (3) one
has, in essence, reduced (14) to (12) for mathematical purposes.  The
introduction of  “m” is a NESTED change, not one on an equal conceptual level
with the basic solution (12).  See the Discussion below for more on the issue.



As an auxiliary point here, all solutions must be symmetrical in our independent
choices, viz. points “a” and “g.”  Otherwise the symmetry of (3) would be
destroyed, along with the conceptual necessity requiring indifference as to which
point is considered independent in setting up the problem.

This implies that the exponents of “y” and “z” must be the same.  And the
exponent cannot be 0, because this would make (14) an inequality.  This
conforms to the range specification on “m” associated with equation 2.58.

Thus the remainder of the solution family offered in Jaynes is easily derivable
from the “main” solution.  The essence of the solution, however, is the single
function given by (11).

Discussion

The generalization to include an exponent “m” in (14) raises an interesting idea
for algebra as a whole.  This conceptual process has a “nested” structure, as
opposed to substitution of other functions at the same conceptual level.  The
process can be applied in any algebraic situation.  For example, given a parabola
y = x^2, there is nothing preventing the substitution of, say, x = z^4 so our
“parabola” becomes the power-eight equation y = z^8.  The curve is the same
functional relation between y and x even though x has become an “intermediary”
between y and z, and has been eliminated algebraically from the relation
between y and z.  This isn’t a simple linear unit change, like feet to yards, or a
“rotation”, but a non-linear change of “sensitivity” of one variable to the other.
The power-eight equation isn’t a special case of the parabola.  It is a relation
between y and a DIFFERENT independent variable, whose definition assumes
the relation of y and x in its definition sequence.

If the relation of y and x is conceptually important the “clues” to the difference
should be left in the development. Confusion can be avoided if one retains
different names for different independent variables, rather than re-defining the “x”
in mid-development to serve as the “z” (as in y = x^8) based on an argument that
the name is arbitrary.  It isn’t arbitrary if the change obscures an essential stage
in the exposition.

In the development in Jaynes, for example, this implicit re-definition has
obscured an important point, viz. that the basic solution to equation 2.45 and it’s
boundary constraints is really a single function S(x) = 1 – x, and not a whole
family of functions.  The remainder of the family can be obtained through the
nested definition process if, and when, necessary.

As further confirmation of this problem, consider equation 2.57.  This is a first
order differential equation (albeit non-linear), and not a partial differential
equation (pde).  The solution should have exactly one arbitrary constant, not two,
and should not be an arbitrary function (the case for pde’s).



The “true” arbitrary constant was set in Jaynes [2] to 1 to satisfy a boundary
constraint (the general solution is S^m + x^m = k^m, not S^m + x^m = 1).  Yet we
also have “m” which appeared during the multiple approximations used in the
derivation shown in Jaynes.  Does this “m” really represent something in the
original conceptual situation, or is it a mathematical artifact arising from the
solution process?  The above development suggests the latter.

Finally, once again I would like to express my thanks, and acknowledge the
contributions of, the people credited in [1].
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